research papers

Acta Crystallographica Section A
Foundations of
Crystallography

ISSN 0108-7673

Received 27 June 2008
Accepted 5 November 2008

Abelianization of space groups

John G. Ratcliffe* and Steven T. Tschantz

Department of Mathematics, Vanderbilt University, Nashville, TN 37240, USA. Correspondence
e-mail: j.g.ratcliffe@vanderbilt.edu

The abelianization of a group is its commutator quotient group. In this paper, we
provide tables of the abelianizations of all the n-dimensional space groups for n
= 1, 2, 3. We prove that the exponent of the torsion subgroup of the
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1. Introduction

An n-dimensional crystallographic (space) group is a discrete
group I' of isometries of Euclidean n-space E" whose orbit
space E"/T" is compact. As a reference for the basic theory of
space groups, see Ratcliffe (2006) or Wolf (1974). For each
n, there are only finitely many isomorphism types of
n-dimensional space groups. The classification of the
isomorphism types of space groups in low dimensions has been
achieved for some time, and nowadays there are computer
programs, such as CARAT (Opgenorth et al., 1998), that will
identify a low-dimensional space group given an affine
representation. However, in practice, one often carries out
calculations by hand, and an isomorphism invariant of a group
that is easy to compute by hand is the abelianization of the
group. In this paper, we provide computer-generated tables of
the abelianizations of all the n-dimensional space groups for n
=1, 2, 3. We also prove some quantitative results about the
abelianization of an arbitrary n-dimensional space group,
which we describe below after we establish some terminology.

Let I" be a group. The abelianization of T', denoted by Iy, is
the quotient group of I' by its commutator subgroup [T, T'].
The commutator subgroup [[', I'] is the subgroup of T
generated by all commutators [«, ] = o'~ a8 of elements
o, B of T'. The commutator subgroup [I', I'] is a characteristic
subgroup of I'. The abelianization I'y, = I'/[T", I'] is the largest
Abelian (commutative) quotient of I'. The abelianization 'y,
is isomorphic to the first homology group H,(I", Z) of I" with
coefficients in the ring of integers Z. The abelianizations of all
the torsion-free or Coxeter n-dimensional space groups for n =
1,2, 3 have been known for some time, but the abelianizations
of the remaining two- and three-dimensional space groups
have not appeared in print before to our knowledge.

The abelianization I',, gives information about the
subgroups of I' that contain [I', T']. A subgroup H of T
contains [, I'] if and only if H is normal in I and I'/H is
Abelian. The normal subgroups of I' with Abelian quotients
correspond to the subgroups of I',, under the quotient
homomorphism from I to I'y,. For example, the subgroups of
I' of index two correspond to the subgroups of I',, of index
two.

abelianization of an arbitrary n-dimensional space group I" divides the order of

Let I" be a finitely generated group. Then I')y = G @ F
where G is a finite Abelian group and F is a free Abelian
group. The finite group G is a characteristic subgroup of I',,
called the torsion subgroup of I',,. The rank of F is an
isomorphism invariant of I', denoted by S,(I"), called the first
Betti number of T'.

The exponent of a finite additive group G is the smallest
positive integer e such that eg = 0 for all g € G. The exponent
of G is the least common multiple of the orders of all elements
of G. In this paper, we prove that the exponent of the torsion
subgroup G of the abelianization I'y, of an arbitrary
n-dimensional space group I' divides the order of the
holonomy (point) group of I.

Let Z(T') be the center of T, that is, the subgroup of all
elements of I' that commute with every element of I'. The
center Z(I') is a characteristic subgroup of I'. The following
theorem, which strengthens Theorem 6 of Farkas (1981), says
that the abelianization of a space group I" determines the size
of the center of I.

Theorem 1. [Ratcliffe & Tschantz (2008), Theorem 6.] If T is
an n-dimensional space group, then every element of Z(I") is a
translation, Z(I") is a free Abelian group of rank B,(I") and
I'/Z(T) is an (n — B,)-dimensional space group.

Let I' be a space group. By Theorem 1, we have that Z(T") is
the subgroup of the translation group T of I'" of all the
elements that are fixed by the action of I" on T by conjugation.
Therefore Z(T") is the subgroup of T of all the elements that
are fixed by the action of the point group IT of I'. This implies
that B,(T") is equal to the dimension of the fixed space of the
point group IT of I by Theorem 1. The fixed space of IT is the
intersection of the fixed spaces of a set of generators of I, and
so the first Betti number of I' is easy to determine.

We became interested in computing I',, when we consid-
ered the problem of identifying the space group I'/Z(I"). By
Theorem 3 of Farkas (1975), the first Betti number of ['/Z(I")
is zero, and so the abelianization of I'/Z(T") is finite. This puts a
restriction on the possibilities for I'/Z(T"). For example, if I'/
Z(T") is one-dimensional, then I'/Z(I") is an infinite dihedral
group by consulting Table 1.

18  doi:10.1107/50108767308036222

Acta Cryst. (2009). A65, 18-27



research papers

2. Computation method

We will explain our computation method by working through
the computation of the abelianization of the two-dimensional
space group 8-pgg. We start by considering generators for the
group given in Table 1A of Brown ef al. (1978). Let I denote
the identity 2 x 2 matrix. The generators are the standard
translations 7, = (1,0) + 7 and 7, = (0, 1) + [ together with
the Euclidean isometries A and 8 = (1/2,1/2) + B where

a= (5 0) m=(3 )

The standard translations generate a free Abelian group of
rank two with generators 7; and 7, and defining relation
[7y, T,] = I; in other words, the translation group has the group
presentation (1, 7,; [7;, T,]). The point group has generators
A, B subject to the relations A2 = I, B> = I, [A, B] = I given
in Table 1A of Brown et al. (1978). Thus the point group of
8-pgg has the group presentation

(A, B; A*, B>, [A, B)).

We now build a group presentation for the space group 8-pgg
by lifting the generators and relations of the point group and
adding relations that show how the lifted generators act on the
standard translations by conjugation. The generators A and B
of the point group lift to generators A and B, respectively. The
relations A2 = I, B> = I, [A, B] = I of the point group lift to
the relations A2 = I, 82 = 1,, [A, B] = 7,7, !, respectively. The
matrices A and B determine how the generators A and S act
on 7; and 7, by conjugation. For example, the columns of B
imply that Br,8~! =1, and Br,B' =1;'. We obtain the
group presentation for the two-dimensional space group
8-pgg,

(T, 1, A, Bs [11, T, A% :32'51_17 (A, ,3]‘[1‘1-[2, AflA_lfh
ARA o, T i Buf ).

We next abelianize the above presentation by making all
generators commute. This gives the Abelian group presenta-
tion for the abelianization of 8-pgg,

2 21 1 2 2
(11,72, A, B, A, B T11"’71 T, T, T)-

We simplify the above presentation by eliminating the
generator 1, via the relation 7; = 7, derived from the relator
177'1,, and obtain the Abelian group presentation

(0, A, B; A%, 5, B3).

We next eliminate the generator 7, via the relation 2 = t, and
obtain the Abelian group presentation (A, B; A?, B%. Hence
the abelianization of the two-dimensional space group 8-pgg is
isomorphic to Z, @ Z,. Here Z,, = Z/nZ is the additive cyclic
group of order n.

In our general computer computation, we skip all the
simplification of the presentations and apply a standard linear
algebra method, discussed in §3.3 of Magnus et al. (1966), to
compute the abelianization of a space group from an initial
group presentation of the space group.

We now explain this method by using it to compute the
abelianization of 8-pgg. The method begins by forming the
presentation m X n matrix M, for the Abelian group presen-
tation, whose ijth entry is the exponent of the ith generator in
the jth relator. For our example, we obtain the following 4 x 5
matrix shown with row and column headings:

|# gt o' & 8
5z |0 =1 ~1 2 0
L |0 0 1 )
A |2 0 0 0 0
g lo 2 0 0 0

The idea of the method is to perform a sequence of elemen-
tary row and column operations on M to convert M into a
matrix of the form

(x'i| 0

with d; > 1 for each i. This implies that M presents the Abelian
group

Ly ® DLy ®L"

The elementary operations allowed on M are

(1) interchange two rows (columns),

(2) change the sign of a row (column),

(3) add an integral multiple of a row (column) to another
row (column).

The first step is to move the smallest nonzero entry of M in
absolute value to the upper left-hand corner by type (1)
elementary operations. For our example, we interchange
columns 1 and 2 to obtain the matrix

-1 -1 2
1 0
0 0
0

0
0
2
0 0

N O O
S o N O

The next step is to make the new upper left-hand corner entry
positive by a type (2) elementary operation. For our example,
we multiply the first row by —1 to obtain the matrix

101 =2 0
001 0 2
020 0 O
20 0 0 O

The next step is to use the new upper left-hand corner entry to
reduce the entries of the first row and first column by type (3)
elementary operations. For our example, we subtract the first
column from the third column and we add twice the first
column to the fourth column to obtain the matrix
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Table 1

The abelianizations of the one-dimensional space groups.

IT BBNWZ Group Conway CARAT Abelianization Holonomy

1111 C, 0 min.1-1.1-0 Z C,

2 12111 D 1l max.1-1.1-0 73 G,

Table 2

The abelianizations of the two-dimensional space groups.

IT BBNWZ HM Conway CARAT Abelianization Holonomy
1 1/11/1 pl o min.2-1.1-0 7 C
2 12/111 p2 2222 group.1-1.1-0 7 C,
3 2/11/1 pm Hok min.3-1.1-0 775 C,
4 2/1172 )24 X X min.3-1.1-1 Z@ZL, C,
5 2/172/1 cm *X min.3-1.2-0 787, C,
6 2/2/1/1 pmm %2222 group.2-1.1-0 7 Cc?
7 22112 pmg 22 group.2-1.1-1 VA Cc?
8 2/2/1/3 y 244 22 group.2-1.1-3 Z,®7Z, Cc?
9 2/2/2/1 cmm 2422 group.2-1.2-0 VA c

10 31111 p4 442 min.4-1.1-0 7, ® 7L, C,

11 3/2/1111 p4m *442 max.2-1.1-0 7 D,

12 3121172 pag 42 max.2-1.1-1 Z,®7Z, D,

13 4/1/11 p3 333 min.5-1.1-0 7 C,

14 4/2/1/1 p3ml %333 group.4-2.1-0 Z, D,

15 4/2/2/1 p3lm 33 group.4-1.1-0 Z, ® Ly D,

16 4/3/1/1 po 632 group.3-1.1-0 Ly ® Zs Cs

17 4/4/1/1 pém *632 max.3-1.1-0 73 Dy

1 0 0 0 0 1 0 0 0 0
00 1 0 2 0O 1 0 0 O
02 0 00 0 0 2 00
2 0 =2 40 0 -2 0 4 4

Then we subtract twice the first row from the fourth row to
obtain the matrix

S O O
SN OO

(=R
~ O O O
S O N O

-2

If in the above process we create a nonzero entry that is
smaller in absolute value than the upper left-hand corner
entry, then we go back to the first step and repeat the process.
If the upper left-hand corner entry is still a smallest nonzero
entry in absolute value, then all the other entries in the first
row and first column are zero. In this case, ignore the first row
and first column and repeat the above process with the
remaining (m — 1) x (n — 1) submatrix. For our example, we
interchange columns 2 and 3 to obtain the matrix

1 0 0 0 O
0 1 0 0 2
0 0 2 00
0 -2 0 4 0

We subtract twice column 2 from column 4 to obtain the
matrix

Then we add twice row 2 to row 4 to obtain the matrix

S O O
S O =
(=3 \S I}
~ O O
~ O O O

The final step for our example is to subtract column 4 from
column 5 to obtain the matrix

0

S O =
[ S IR
~r O OO
[Nl

1
0
0

o

which is of the desired form. From this final matrix, we see that
the abelianization of 8-pgg is isomorphic to Z, & Z,. The 1
entries of the matrix do not contribute anything, since
7y =7Z]Z = {0}.

3. Tables

In order to make our tables as useful as possible, we have
included all the most common names for the the space groups.
The column headed IT gives the International Tables (Hahn,
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Table 3

The abelianizations of the three-dimensional space groups.

IT BBNWZ HM Conway CARAT Abelianization Holonomy
1 1111 P1 () min.6-1.1-0 7z C
2 1/2/1/1 P1 (2222) group.5-1.1-0 Z G,
3 21111 P2 (20202620) min.7-1.1-0 VAY/S G,
4 211172 P2, (2,2,2,2)) min.7-1.1-1 7.&72 G,
5 211211 2 (20202121) min.7-1.2-0 A=Y/ G
6 221171 Pm [oo] min.8-1.1-0 o7 G,
7 221172 Pc (3p) min.8-1.1-1 7’7, G,
8 212211 Cm [o1] min.8-1.2-0 77, G,
9 2021212 Cc 3y) min.8-1.2-1 7 G,

10 2131111 P2/m 1202626201 group.6-1.1-0 VA c
11 2/3/1/3 P2,/m [2,2,2,2,] group.6-1.1-1 Z; G
12 2131211 C2/m [20202:2,] group.6-1.2-0 Z G
13 2131112 P2/c (202,22) group.6-1.1-2 z c
14 2/3/1/4 P2, /c (2,2,22) group.6-1.1-3 7 ®Z, c
15 213212 C2/c (22,22) group.6-1.2-1 Z c
16 311171 P222 (¥26202020) min.10-1.1-0 Z; c
17 311172 P222, (%2,2,2,2,) min.10-1.1-1 Z c
18 3/1/1/3 P2,2,2 (2020%) min.10-1.1-3 Zy® 7, c
19 3/1/1/4 P2,2,2, (2,2,%) min.10-1.1-7 7; c
20 31122 222, (2,%2,2,) min.10-1.2-1 z c:
21 31211 222 (20%2020) min.10-1.2-0 Z c
22 3/1/3/1 F222 (¥202,202,) min.10-1.3-0 7 c
23 3/1/4/1 1222 (2,%2620) min.10-1.4-0 Ly ® L, c
24 3/1/4/2 12,2,2, (20%2,2,) min.10-1.4-1 7 Cc:
25 32111 Pmm2 (%2:2:2:2) min.9-1.1-0 VAY/S c
26 321117 Pmc2, (%2:22:2) min.9-1.1-2 VAY/S c
27 3/2/1/3 Pcc2 (%:2:2:2:2) min.9-1.1-10 787; G
28 32172 Pma? (2620%") min.9-1.1-1 787 c:
29 3/211/9 Pca2, (2,2,%) min.9-1.1-6 7.&7: c
30 312/1/4 Pnc2 (2020%:) min.9-1.1-11 VAY/ c
31 3/2/1/8 Pmn2, (2,2,%") min.9-1.1-3 VAY/ c
32 321175 Pba2 (2020 %) min.9-1.1-5 787,87, c
33 3/2/1/10 Pna2, (2,2,%) min.9-1.1-7 787, c:
34 312/1/6 Pnn2 (2020%1) min.9-1.1-15 VASY/ c
35 312211 Cmm2 (29%-2-2) min.9-1.2-0 VACYA C
36 312/2/3 Cme2, (2,%:2:2) min.9-1.2-1 A=Y/ c:
37 312212 Cec2 (2%:2:2) min.9-1.2-3 VAY/ c:
38 3/2/3/1 Amm?2 (%2-22:2) min.9-1.3-0 VASY/ c
39 3/2/3/2 Abm?2 (%:2:2:2:2) min.9-1.3-2 7297 Cc?
40 312/3/3 Ama2 (202,%") min.9-1.3-1 A=Y/ c
41 312/3/4 Aba2 (202,%2) min.9-1.3-3 VASY/ c
42 312/4/1 Fmm2 (%2-2:2:2) min.9-1.4-0 VAY/ G
43 3/2/412 Fdd2 (2921 %) min.9-1.4-1 VAV (e
44 312/5/1 Imm2 (2,%2-2) min.9-1.5-0 VAY/ c
45 312/5/3 Iba2 (2,%:2:2) min.9-1.5-3 VAY/ c:
46 3121512 Ima2 (29%-2:2) min.9-1.5-1 787, a
47 3/3/1/1 Pmmm [%-2:2:2.2] group.7-1.1-0 75 G
48 3/3/1/4 Pnnn (2%,242,) group.7-1.1-63 7 G
49 3/3/172 Pccm [%:2:2:2:2] group.7-1.1-10 7 c
50 3/3/1/3 Pban (2%02020) group.7-1.1-30 7, G
51 3/3/1/5 Pmma [202%] group.7-1.1-1 VA c
52 3/3/1/8 Pnna (292%,) group.7-1.1-31 7 (o
53 3/3/1/7 Pmna [2524%:] group.7-1.1-11 7 c
54 3/3/1/6 Pcca (202%,) group.7-1.1-21 7z G
55 3/3/1/13 Pbam 1202 %] group.7-1.1-5 77, G
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Table 3 (continued)

1T BBNWZ HM Conway CARAT Abelianization Holonomy
56 3/3/1/12 Pccn (2%:2:2) group.7-1.1-23 VY c
57 3/3/1/9 Pbcm (292%) group.7-1.1-6 s G
58 3/3/1/14 Pnnm 1202 %] group.7-1.1-15 oL, G
59 3/3/1/11 Pmmn (2%-2-:2) group.7-1.1-3 Z; c
60 3/3/1/10 Pben (292%:) group.7-1.1-27 7 C
61 3/3/1/16 Pbca (2,2%:) group.7-1.1-25 7 G
62 3/3/1/15 Pnma (2,2%-) group.7-1.1-7 Zy® 7, C
63 3/3/2/3 Cmem [242,%] group.7-1.2-1 Z; c
64 3/3/2/6 Cmca [252,%:] group.7-1.2-5 7, G
65 3131211 Cmmm [2%-2-2] group.7-1.2-0 7 G
66 3/3/2/2 Cecm [2y%:2:2] group.7-1.2-3 7 c
67 3/3/2/4 Cmma (%2(2-2-2) group.7-1.2-4 VA c
68 3/3/2/5 Ccca (%2(2:2:2) group.7-1.2-7 7 G
69 3/3/31 Fmmm [¥2-2:2:2] group.7-1.3-0 VA c
70 3/3/3/2 Fddd (2%242)) group.7-1.3-1 7 (o
71 3/3/4/1 Immm [2,%2:2] group.7-1.4-0 7 c
72 3/3/4/2 Ibam [2,%:2:2] group.7-1.4-3 z G
73 3/3/4/4 Ibca (%2,2:2:2) group.7-1.4-7 Z G
74 3/3/4/3 Imma (%2,2-2:2) group.7-1.4-1 Z; G
75 41171 P4 (49402,) min.11-1.1-0 707,87, C,
76 411172 P4, (4,4,2) min.11-1.1-1 VASYA C,
77 41/1/3 P4, (4,4,2,) min.11-1.1-2 VAY/ C,
79 41211 14 (4,4,2)) min.11-1.2-0 VAV C,
80 41722 14, (454,2)) min.11-1.2-1 ACYA C,
81 42/11 P4 (442,) min.12-1.1-0 77, C,
82 421211 14 (442)) min.12-1.2-0 7 C,
83 43/11 P4/m [404020] group.12-1.1-0 7 ®7Z, C,x G,
84 4/3/1/2 P4, /m [4,4,2,] group.12-1.1-2 o7, C,xC,
85 4/3/1/3 P4/n (44,2) group.12-1.1-1 oL, C, xC,
86 4/3/1/4 Pé,y/n (44,2) group.12-1.1-3 o7, C, x G,
87 4131211 I4/m [4,402,] group.12-1.2-0 o7, C,x G,
88 4/3/2/2 14, /a (44,2) group.12-1.2-1 Z,®7Z, C, x G,
89 4/4/11 P422 (%49402,) group.11-1.1-0 z3 D,
90 4/4/1/4 P42,2 (49%2,) group.11-1.1-1 7y ®Z, D,
91 4/4/172 P4,22 (x4,4,2)) group.11-1.1-2 7 D,
92 4/4/1/5 P4,2,2 (4,%2,) group.11-1.1-3 Z,®7Z, D,
93 414173 P4,22 (%4,4,2,) group.11-1.1-4 Z D,
9% 4/4/1/6 P4,2,2 (4,%2,) group.11-1.1-5 77, D,
97 4141211 1422 (x4,4,2,) group.11-1.2-0 7 D,
98 441212 14,22 (%4;4,2,) group.11-1.2-1 7 D,
99 45111 Pdmm (-4-4-2) group.10-1.1-0 VAY/ D,
100 4/511/5 P4bm (49%-2) group.10-1.1-2 207,97, D,
101 4/5/1/4 Pdycm (%:4-4:2) group.10-1.1-4 72073 D,
102 4/5/1/8 Pd,nm (4,%:2) group.10-1.1-6 787, D,
103 4/511/3 Pécc (x:4:4:2) group.10-1.1-5 7.&7: D,
104 4/511/7 Pénc (4y%:2) group.10-1.1-7 7287, D,
105 4151172 P4,mc (%-4:4-2) group.10-1.1-1 VASYA D,
106 4/5/1/6 P4,bc (4,%:2) group.10-1.1-3 o7, D,
107 45121 T4mm (%-4-4:2) group.10-1.2-0 VAY/ D,
108 4151212 T4em (x-4:4:2) group.10-1.2-1 VAY/ D,
109 4/5/2/3 I4,md (4,%2) group.10-1.2-2 VASYA D,
110 4/5/2/4 14,cd (4,%:2) group.10-1.2-3 77, D,
111 4/6/1/1 P42m (%4-42,) group.9-2.1-0 7 D,
112 4/6/1/2 P&2c (x4:42,) group.9-2.1-2 7 ®Z, D,
113 4/6/1/3 P42,m (4%-2) group.9-2.1-1 77, D,
114 4/6/1/4 Pa2,c (4%:2) group.9-2.1-3 72 D,
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Table 3 (continued)

1T BBNWZ HM Conway CARAT Abelianization Holonomy
115 4/6/2/1 Pam2 (%-44-2) group.9-1.1-0 z D,

116 416/2/2 Pac2 (#:44:2) group.9-1.1-2 o7, D,

117 4/6/2/3 Pab2 (4%02)) group.9-1.1-1 Ty ®Z, D,

118 4/6/2/4 Pan2 (4%,2)) group.9-1.1-3 Ly ®Z, D,

119 4/6/3/1 14m2 (x4-42,) group.9-2.2-0 7 D,

120 4/6/3/2 14c2 (x4:42)) group.9-2.2-1 7 D,

121 4/6/4/1 142m (%-44:2) group.9-1.2-0 o7, D,

122 4/6/4/2 142d (4%2)) group.9-1.2-1 Z,®7Z, D,

123 4711 P4/mmm [%-4-4-2] group.8-1.1-0 VA D, x C,
124 4/711/2 P4/mcc [*:4:4:2] group.8-1.1-9 zi D, xC,
125 47/1/5 PA/nbm (%494-2) group.8-1.1-2 Z; D, x G,
126 417/1/6 P4 /nnc (x4y4:2) group.8-1.1-11 Z D, x G,
127 471113 P4/mbm [4%-2] group.8-1.1-6 oL, D, x G,
128 4/7/114 P4/mnc [4y%:2] group.8-1.1-15 27, D, xC,
129 4/7/1/9 PA/nmm (%4-4.2) group.8-1.1-4 Z D, x G,
130 4/7/1/10 P4/nce (x4:4:2) group.8-1.1-13 7 D, x G,
131 4/7/1/3 P4, /mmc [-4:4-2] group.8-1.1-8 Z D, x C,
132 4/711/4 P4, /mcem [*:4-4:2] group.8-1.1-1 Z D, xC,
133 471117 P4, /nbc (%4,4:2) group.8-1.1-10 z D, x G,
134 417/1/8 P4, /nnm (x4,4-2) group.8-1.1-3 Z D, x G,
135 47115 P4, /mbc [4,%:2] group.8-1.1-14 oL, D, x G,
136 4/7/116 P4, /mnm [4,%-2] group.8-1.1-7 227, D, x G,
137 47/111 P4, /nme (x4-4:2) group.8-1.1-12 z D, x G,
138 4/7/11/112 P4, /[ncm (x4:4-2) group.8-1.1-5 oL, D, x C,
139 47121 14/mmm [%-4-4:2] group.8-1.2-0 Vs D, x C,
140 471212 I4/mem [*-4:4:2] group.8-1.2-2 Z D, x G,
141 4/7/2/3 14, Jamd (x4,4-2) group.8-1.2-1 Z D, x G,
142 4171214 14, /acd (x4,4:2) group.8-1.2-3 7 D, x G,
143 51211 P3 (363030) min.13-1.1-0 VAY/ G

144 5/1/2/2 P3, (3,3,3) min.13-1.1-1 VASYA G,

146 51111 R3 (303:3,) min.13-1.2-0 VASYA G

147 52121 P3 (63,2) group.22-1.1-0 o7, G

148 5211 R3 (63,2) group.22-1.2-0 Ty ®Zys G

149 5131211 P312 (%3)3,3,) group.20-1.1-0 7 D,

150 5131311 P321 (30%3,) group.20-2.1-0 Zy® Ly D,

151 5131212 P3,12 (%3,3,3)) group.20-1.1-1 7 D,

152 5/3/3/2 P3,21 (3,%3,) group.20-2.1-1 Zy® 7y D,

155 5/3/11 R32 (%3)3,3,) group.20-1.2-0 7 D,

156 5141211 P3ml (%33-3) group.21-2.1-0 VASYA D,

157 5/4/3/1 P3lm (3o%-3) group.21-1.1-0 207, L, D,

158 5/4/2/2 P3cl (%:3:3:3) group.21-2.1-1 Z D,

159 5/4/3/2 P3lc (3y%:3) group.21-1.1-1 VASYA D,

160 51411 R3m (3,%:3) group.21-1.2-0 VASYA D,

161 5/4/172 R3c (3,%:3) group.21-1.2-1 Z D,

162 5/512/1 P31m (%6352) group.14-1.1-0 7 Dy

163 5151212 P3lc (#:63,2) group.14-1.1-1 7 Dy

164 5/5/3/1 P3m1 (%6-32) group.14-2.1-0 7 Dy

165 5/51312 P3cl (%6:3:2) group.14-2.1-1 72 Dy

166 5/5/1/1 R3m (%63,2) group.14-1.2-0 7 Dy

167 5/5/1/2 R3c (%:63,2) group.14-1.2-1 7 Dy

168 6/1/1/1 P6 (663020) group.18-1.1-0 Z®7, dZLs G

169 6/1/1/4 P6, (6,3,2,) group.18-1.1-1 Z G

171 6/1/1/2 P6, (6,3,2)) group.18-1.1-2 VASYA Cq

173 6/1/1/3 PO, (65302)) group.18-1.1-3 VASYA G

174 6/2/1/1 P6 [303030] group.19-1.1-0 T ®7; G

175 6/3/11 P6/m [603020] group.13-1.1-0 Lo, Cox C,
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Table 3 (continued)

1T BBNWZ HM Conway CARAT Abelianization Holonomy
176 6/3/1/2 P6;/m [653021] group.13-1.1-1 VXY Cs x G,
177 6/4/1/1 P622 (%653020) group.17-1.1-0 7 Dy

178 6/4/1/4 P6,22 (%6,3,2)) group.17-1.1-1 72 Dy

180 6/4/1/2 P6,22 (%6,3,2)) group.17-1.1-2 Y/ Dy

182 6/4/1/3 P6;22 (#65302,) group.17-1.1-3 7 Dy

183 6/5/111 P6mm (%63-2) group.15-1.1-0 A=Y/ D,

184 6/5/1/2 Pécc (#:6:3:2) group.15-1.1-3 7287, Dy

185 6/5/1/4 P6ycm (+:6:3:2) group.15-1.1-2 7287, Dy

186 6/5/1/3 P6;mc (%:6-3-2) group.15-1.1-1 787, Dy

187 6/6/1/1 P6m2 [%-3:3-3] group.16-1.1-0 7 Dy

188 6/6/1/2 P6c2 [%:3:3:3] group.16-1.1-1 72 Dy

189 6/6/2/1 P&2m [3o*-3] group.16-2.1-0 VLY Dy

190 6/6/2/2 P62c [3y%:3] group.16-2.1-1 o7, Dy

191 6/7/1/1 P6/mmm [+6:3-2] max.4-1.1-0 VA Dy x C,
192 6/7/1/2 P6/mec [%:6:3:2] max.4-1.1-3 Y/ Dy x C,
193 6/7/1/4 P6;/mem [+-6:3:2] max.4-1.1-2 7 Dy x C,
194 6/7/1/3 P6, /mmc [%:6-3-2] max.4-1.1-1 7 Dy x C,
195 7111 P23 2° min.14-2.1-0 Z,®7Z, A,

196 71211 F23 1° min.14-1.1-0 Z, A,

197 7131 123 400 min.14-3.1-0 7, ®7Z, A,

198 71172 P2,3 1°/4 min. 14-2.1-1 Z, A,

199 711/3/2 12,3 2°/4 min.14-3.1-1 Z,®7Z, A,

200 72111 Pm3 4= group.23-2.1-0 o7, A, x G,
201 721172 Pn3 4o+ group.23-2.1-1 oL, Ay x Gy
202 72211 Fm3 2- group.23-1.1-0 Z,®7Z Ay x G,
203 7121212 Fd3 20t group.23-1.1-1 Z,®7Z Ay x G,
204 7121311 Im3 8=° group.23-3.1-0 7 ®7Z, A, x G,
205 7121173 Pa3 27 /4 group.23-2.1-2 Z, ®Zs Ay x G,
206 7121312 143 4= /4 group.23-3.1-1 Ty ®Zs Ay x G,
207 73111 P432 4o- group.25-2.1-0 72 S,

208 7131173 P4,32 4t group.25-2.1-2 72 S,

209 7131211 F432 207 group.25-1.1-0 Z, S,

210 7131212 F4,32 2+ group.25-1.1-1 Z, S,

211 713131 1432 gt group.25-3.1-0 72 S,

212 7131172 P4,32 2+ /4 group.25-2.1-1 Z, S,

214 7131312 14,32 4+ /4 group.25-3.1-1 7 S,

215 714111 P43m 20:2 group.24-2.1-0 7 S,

216 7141211 F&3m 1°2 group.24-1.1-0 Z, S,

217 7141311 143m 402 group.24-3.1-0 Z,®7Z, S,

218 7141172 P43n 4° group.24-2.1-1 Z, S,

219 7141212 Fa&3¢ 2% group.24-1.1-1 Z, S,

220 7141312 143d 4°/4 group.24-3.1-1 Z, S,

221 7511 Pm3m 472 max.5-2.1-0 Y/ S, x G,
222 7/5/1/3 Pn3n 8% max.5-2.1-1 7 S, x C,
223 7I51112 Pm3n 8° max.5-2.1-3 7 S, x Cy
224 75/1/4 Pn3m 422 max.5-2.1-2 7 S, x G,
225 7151211 Fm3m 272 max.5-1.1-0 72 S, x C,
226 7151212 Fm3c 4= max.5-1.1-2 7 S, x C,
227 751214 Fd3m 222 max.5-1.1-1 7 S, x C,
228 7/512/3 Fd3c 4+ max.5-1.1-3 7 S, x C,
229 7151311 Im3m 82 max.5-3.1-0 Y/ S, x G,
230 7151312 1a3d 8 /4 max.5-3.1-1 7 S, x G,

1987) number. The column headed BBNWZ gives the Brown— 1978) symbol. The column headed HM gives the Hermann-—
Biilow—Neubiiser—Wondratschek—Zassenhaus (Brown et al., Mauguin symbol (Hahn, 1987). The column headed Conway
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gives the Conway symbol (Conway, 1992; Conway et al., 2001).
The column headed CARAT gives the CARAT (Opgenorth et
al., 1998) symbol. The column headed Abelianization gives the
abelianization. Here Z, = Z/nZ is the additive cyclic group of
order n. We use exponential notation so that Z; = Z, ® Z,.
The column headed Holonomy gives the holonomy (point)
group. Here C, is the multiplicative cyclic group of order n, D,
is the dihedral group of order 2n, A, is the alternating group of
order 12 and S, is the symmetric group of order 24. We use
exponential notation so that C3 = C, x C,.

The eleven enantiomorphic three-dimensional space-group
pairs are (76 — P4y, 78 — P4;), (91 — P4,22, 95 — P4;22),
(92 - P4,22,96 — P432,2), (144 — P3,, 145 - P3,), (151 - P3,12,
153 - P3,12), (152 - P3,21, 154 — P3,21), (169 — P6,, 170 — P6s),
(171 - P6,,172 — P6,), (178 — P6,22,179 — P6522), (180 — P6,22,
181 - P6,422), (212 — P4332, 213 — P4,32). As enantiomorphic
space groups are isomorphic, we only list the first group of
each pair.

As input for our computer programs, we first used the
BBNWZ generators for space groups and relations for point
groups given in Brown et al. (1978). We then reran our
programs with generators and relations provided by
CARAT, and crosschecked the abelianizations. Finally, all the
abelianizations in our tables were checked by hand
calculations to further insure the accuracy of our
calculations.

The first Betti number, §;, of a space group depends only on
the center of the space group by Theorem 1, and so B, depends
only on the fixed space of the point group; consequently S,
depends only on the QQ-class of the point group. A Q-class is
denoted by the first two numbers of the BBNWZ symbol. By
inspection, all the first Betti numbers of the three-dimensional
space groups were computed correctly by our computer
programs.

The abelianizations of the torsion-free two-dimensional
space groups (IT Nos. 1, 4) are well known. These two groups
are classified by their abelianizations. The abelianizations of
the torsion-free three-dimensional space groups (IT Nos. 1, 4,
7,9,19, 29, 33, 76, 144, 169) agree with the tables on page 122
of Wolf (1974). These ten groups are classified by their
orientability and abelianizations.

The abelianization of a Coxeter group is easily computed
from its Coxeter diagram. In particular, the abelianization of a
finitely generated Coxeter group is finite of exponent 2. The
only one-dimensional space group that is a Coxeter group is
D,. The two-dimensional space groups that are Coxeter
groups are the reducible group 6-pmm (D, x D), and the
irreducible groups 11-p4m, 14-p3m1 and 17-p6m. The three-
dimensional space groups that are Coxeter groups are the
reducible groups with IT Nos. 47 (D, x pmm), 123
(Do x pdm), 187 (D, x p3ml) and 191 (D, x p6m), and the
irreducible groups with IT Nos. 216, 221 and 225. The Coxeter
diagram of IT No. 216 is a square with all edge labels 3. The
diagram of No. 221 is the linear diagram (4, 3, 4), and the
diagram of No. 225 is a star with edge labels 4, 3, 3.

If K is a m-dimensional space group and H is an n-
dimensional space group, then K x H is an (m + n)-

dimensional space group. The consistency of our tables can be
checked using the relationship (K x H),, 2 K,, & H,,.

The two-dimensional space groups that are the direct
products of one-dimensional space groups are 1-pl
(Cy, x Cy),3-pm (Cyy, x D) and 6-pmm (D, x D).

The three-dimensional space groups that are the direct
product of a one-dimensional space group and a two-
dimensional space group are the space groups with IT Nos. 1
(Coo x p1),3(Cy x p2),6(Cyy x pm, Dy, x p1),7(Cy X pg),
8 (Cy, x cm), 10 (Do, x p2), 25 (Coy X pmm, D, x pm), 26
(Do X pg), 28 (Coo X pmg), 32 (Cy, x pgg), 35 (Cyx X cmmy),
38 (Do xcm), 47 (D, x pmm), 51 (D, X pmg), 55
(Dy X pgg), 65 (Do x cmm), 75 (Coy x p4), 83 (D, X p4),
99 (C, x pdm), 100 (C,, x pdg), 123 (D, x pdm), 127
(D x pdg), 143 (C, xp3), 156 (Cy x p3ml), 157
(Cys X p31m), 168 (Cy, x p6),174 (D, X p3), 175 (D, X pb),
183 (C,, x p6m), 187 (D, x p3ml), 189 (D, x p31m) and
191 (D, x pbm).

4. Theory of the abelianization of space groups

Let I" be an n-dimensional space group with translation group
T and point group II. In this section, we prove that the
exponent of the torsion subgroup of I'y, divides the order of
IT. We now explain how I',, is built up from T and I1,,. To
begin with, we have a short exact sequence of groups and
homomorphisms

1T 51501,

Exact means that the image of a homomorphism is equal to
the kernel of the following homomorphism in the sequence.
For example, in the above sequence, the image T of the
inclusion map i from T to I is the kernel of the projection map
p from I' to IT defined by p(a + A) = A. Short means a
sequence of four group homomorphisms with end groups of
order 1. In a short exact sequence the second homomorphism
is injective and the third homomorphism is surjective. A space
group I' is called symmorphic if the above short exact
sequence splits, that is, if there exists a homomorphism
s : I — I'such that ps : IT — ITis the identity map. The map
s is called a right inverse of p.

Let Ty =T/[I, T] where [[, T]={[y,7]:y e, 7€ T}
There is an exact sequence that explains how Iy, is built up
from T and IT,,. By Corollary 6.4 of Chapter VII of Brown
(1982), we have an exact sequence of homology groups, with Z
coefficients, and homomorphisms induced by the inclusion i of
T into I' and the projection p of I" onto II,

Hy(T) 25 Hy(T) => Ty —> T,y 25 M1, — 0.

If I is symmorphic, then both p, maps in the above sequence
have right inverses, and so we have a split, short, exact
sequence

0> Ty —> T, —> II,, — 0.

Therefore, we have I',, = T; @ I1,,. Note that 73 of the 219
three-dimensional space groups are symmorphic. The

Acta Cryst. (2009). A65, 18-27

Ratcliffe and Tschantz « Abelianization of space groups 25



research papers

symmorphic space groups are those whose BBNWZ symbol
ends in 1 (or whose CARAT symbol ends in 0).

If IT is cyclic, then H,(IT) = 0, and so we have a short exact
sequence

0> Ty — T, —> II,, — 0.

If H,(IT) is nontrivial, then i, : T; — I',, need not be injec-
tive. For example, consider the two-dimensional space group
8-pgg considered in §2. The relators At A7't,, A,A ',
Bt B!, Br,B7!1, of the presentation for I' imply that T
has the Abelian presentation (1, 7T,; 77, 73). Therefore
Typ 2 Z,®7Z, Here Il = C, x C,, and by Corollary 5.8 of
Chapter V of Brown (1982), we have that H,(IT) = Z,. Now
the relator [A, Bty !, in the presentation for I' implies that
the generator of H,(IT) is mapped to the element [I", T]r; 7,
of Ty by the connecting homomorphism & : H,(IT) — Tp,.
Therefore [, T]t; 75! is in the kernel of i, : Ty — Ty,
In general, we have the exact sequence

iy Px
Ty — I'y, — I, = 0.

Denote the exponent of a finite Abelian group G by Exp(G)
and the torsion subgroup of an Abelian group G by Tor(G).
The last exact sequence implies the next proposition.

Proposition 1. If T is an n-dimensional space group, then
Exp(Tor(T",,)) divides Exp(Tor(Tp))Exp(I1,,). In particular,

Exp(Tor(I",,)) = Exp(Tor(Tp))Exp(IT,,).

If ' is the two-dimensional space group 8-pgg, then the
exponents of I',,, Ty and I, are 4, 2 and 2, respectively.
Hence, the upper bound for the exponent of Tor(I',,) in
Proposition 1 is sharp for this example. More generally, if
' = pgg x D";2, then the exponents of 'y, Tryand I1,, are 4,
2 and 2, respectively, and so the upper bound for the exponent
of Tor(T",,) in Proposition 1 is sharp for this example for all
n>2.

Proposition 2. Let I be an n-dimensional space group. Let
i:Z()—> T and p: T — I'/Z(T") be the natural injection
and projection. Then i and p induce a short exact sequence

1= Z(I) =5 T, 25 (T/Z(T)),, — 0.

Proof. The short exact sequence

15 200 -5 1 25 r/z(r) - 1
induces a homology exact sequence

Z(N) 5 T, 25 (T/2(I)),, — 0.

The group (I'/Z(T")),, is finite by Theorem 3 of Farkas (1975),
and so the image of i, is of finite index in I",,. By Theorem 1,
we have that Z(T") is a free Abelian group of rank g,(I"), and
so i, must be injection.

Let K be a set of orthogonal transformations of E". Define
Fix(K) = {x € E" : Cx = x for all C € K}.

Then Fix(K) is a vector subspace of E". We denote the order of
a group G by |G]|.

Theorem 2. Let T" be an n-dimensional space group with
translation group T and point group IT. Let K be a subgroup of
IT such that

dim(Fix(K)) = ,(I).

Then Exp(Tor(Ty;)) divides [K|. In particular, Exp(Tor(Tp))
divides |I1|, and so

Exp(Tor(Tp)) < |T1].

Proof. As Fix(I') C Fix(K) and
dim(Fix(I")) = B,(I") = dim(Fix(K)),

we conclude that Fix(T") = Fix(K).

The point group IT acts on T by conjugation. If A € IT and
b+1 e T, then A(b +I1)A~' = Ab + I. Hence it is natural to
replace the multiplicative group T with the isomorphic
additive group T, ={b e E":b+ 1T} Likewise we
replace Z(I') with the isomorphic group Z(I), =
{beE":b+1eZ()}

The action of IT on T corresponds to the natural action of
IT on T,y by left multiplication. Now Tp is isomorphic
to (T,g)g=T./H where H is generated by
{Ab—b:AecIland b € T4}

Let b € T 4. Then we have

IK|b = > {Cb: C € K} mod H.
If A € K, then we have
(A=D>{Ch:CeK}=0.
Hence, we have that
>{Ch:CeK}eFix(K)NT,, =Fix(I) NT,y = Z(I),4-

Therefore |K|b =0 mod HZ(T"),,. Hence Exp(T,;/HZ(T),q)
divides |K|. Now Z(T") injects into I',, by Proposition 2. The
injection of Z(T") into I'y, factors through Tp, and so we may
regard Z(I") to be a subgroup of Ty, and likewise we may
regard Z(I"),q4 to be a subgroup of (T,q)r- Then we have that

Tad/(HZ(F)ad) = (Tad)ﬂ/z(r)ad'

Hence Exp(T/Z(I')) divides |K|. As the quotient map from
Tp to Tp/Z(I") maps Tor(Ty) isomorphically onto a subgroup
of Ty /Z(T'), we have that Exp(Tor(Tp)) divides [K|. In parti-
cular, Exp(Tor(Tp)) divides |IT].

If n = 2, then Il has an element A such that
dim(Fix(A)) = B,(T"), and we deduce from Theorem 2 that the
exponent of Tor(T) divides the order of A. For example, let I"
be the symmorphic two-dimensional space group 16-p6. Then
IT has an element A of order 2 and an element B of order 3
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such that Fix(A) = Fix(B) = {0}. Therefore Exp(Ty) divides
both 2 and 3. Hence Exp(Tp) = 1, and so T = {0}.

Lett, =e¢;,4+Ifori=1,...,nbe the standard translations,
andletI" = (7, ..., t,, —I). Then Exp(T) = 2 = |I1|, and so
the upper bound for the exponent of Tor(Tp) in Theorem 2 is
sharp for this example for all n > 1.

Proposition 1 and Theorem 2 imply that Exp(Tor(I",,))
divides |IT|Exp(I1,,). The next theorem gives a better result.

Theorem 3. If T is an n-dimensional space group with point
group I1, then Exp(Tor(T,,)) divides |I1|, and so

Exp(Tor(T',)) < [T].

Proof. For each A € I, choose a coset representative a, + A
of Tin I" corresponding to A. Given an element b 4+ B € I" and
a coset representative a, + A, then

(a,+A)b+B)a,z +AB) ' €T.

The transfer homomorphism # :I" — T is defined by the
formula

tr(b + B) = [[{(a, + A)b + B)a,, +AB)™" : A e TT}.

As T is Abelian, #r induces a homomorphism ¢, : I'y, — T.
The inclusion map i:T — I' induces a homomorphism
i, : T— TI'y. The composition i, : I'y, — I',, is obviously
multiplication by |I1|. Now tr,(Tor(I',,)) = {0}, since T is
torsion free. Therefore, we have that

|H|T0r(rab) = i*tr*(Tor(Fab)) = {O}
Hence Exp(T,,) divides |TI].

Let T" be a symmorphic n-dimensional space group with
cyclic point group II. Then I, =T, @®Il. Hence
Exp(Tor(I",;,)) = |I1|, and so the upper bound for the expo-
nent of Tor(I",,) in Theorem 3 is sharp for this example for all
n>1.

Let T" be the three-dimensional space group with IT No.
197. Then T',, = Z, @ Z,, and the point group IT of I' is
isomorphic to A,. Hence Exp(I,,) = 12 = |I1], and so the upper
bound for the exponent of I',, in Theorem 3 is sharp for this
example.

Remark: Let I' be an n-dimensional space group with
translation group T and point group I1. By the same transfer
argument as in the proof of Theorem 3, the exponent of the
torsion subgroup of the kth homology group H, (I',Z) of I’
divides |IT| for each positive integer k, since H,(T, Z) is torsion
free for each k.

A group I is said to be perfect if T'y, = {0}. In looking over
our tables, one sees that every n-dimensional space group is

imperfect for n = 1, 2, 3. The reason this is true is that the point
group [T is solvable for n = 1, 2, 3, and so either IT is trivial or
[T,y is nontrivial. This is no longer true for n = 4. Let I" be one
of the two four-dimensional space groups whose Z-class has
BBNWZ symbol 31/3/2. Then IT is isomorphic to As, which is a
simple group of order 60, and so Il,, = {0}. From the
generators for IT given in Brown et al. (1978), we compute that
T = {0}. Hence I'y, = {0} by Proposition 1. These two groups
are the only perfect four-dimensional space groups.

By a computer calculation, using the database provided by
CARAT, we found that in dimension 5 only six of the 222 018
space groups are perfect. The CARAT symbols of these
perfect space groups are group.1034-3.1-0, group.1039-1.1-0,
group.1039-3.1-1, min.169-1.1-0, min.169-1.1-1 and min.169-
2.1-1. The point group of the Q-class min.169 is the simple
group As of order 60. The point group of the Q-class
group.1039 is the simple group A4 of order 360. The point
group of the Q-class group.1034 is the perfect group of order
960, which is a split extension of Z; by As, denoted A52* by
Holt & Plesken (1989).

We are grateful for the referees’ helpful comments and for
their suggestion to investigate the exponent of the torsion
subgroup of the abelianization of a space group.
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