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The abelianization of a group is its commutator quotient group. In this paper, we

provide tables of the abelianizations of all the n-dimensional space groups for n

= 1, 2, 3. We prove that the exponent of the torsion subgroup of the

abelianization of an arbitrary n-dimensional space group � divides the order of

the point group of �.

1. Introduction

An n-dimensional crystallographic (space) group is a discrete

group � of isometries of Euclidean n-space En whose orbit

space En/� is compact. As a reference for the basic theory of

space groups, see Ratcliffe (2006) or Wolf (1974). For each

n, there are only finitely many isomorphism types of

n-dimensional space groups. The classification of the

isomorphism types of space groups in low dimensions has been

achieved for some time, and nowadays there are computer

programs, such as CARAT (Opgenorth et al., 1998), that will

identify a low-dimensional space group given an affine

representation. However, in practice, one often carries out

calculations by hand, and an isomorphism invariant of a group

that is easy to compute by hand is the abelianization of the

group. In this paper, we provide computer-generated tables of

the abelianizations of all the n-dimensional space groups for n

= 1, 2, 3. We also prove some quantitative results about the

abelianization of an arbitrary n-dimensional space group,

which we describe below after we establish some terminology.

Let � be a group. The abelianization of �, denoted by �ab, is

the quotient group of � by its commutator subgroup [�, �].

The commutator subgroup [�, �] is the subgroup of �
generated by all commutators ½�; �� ¼ ��1��1�� of elements

�; � of �. The commutator subgroup [�, �] is a characteristic

subgroup of �. The abelianization �ab ¼ �=½�;�� is the largest

Abelian (commutative) quotient of �. The abelianization �ab

is isomorphic to the first homology group H1ð�;ZÞ of � with

coefficients in the ring of integers Z. The abelianizations of all

the torsion-free or Coxeter n-dimensional space groups for n =

1, 2, 3 have been known for some time, but the abelianizations

of the remaining two- and three-dimensional space groups

have not appeared in print before to our knowledge.

The abelianization �ab gives information about the

subgroups of � that contain [�, �]. A subgroup H of �
contains [�, �] if and only if H is normal in � and �/H is

Abelian. The normal subgroups of � with Abelian quotients

correspond to the subgroups of �ab under the quotient

homomorphism from � to �ab. For example, the subgroups of

� of index two correspond to the subgroups of �ab of index

two.

Let � be a finitely generated group. Then �ab ¼ G� F

where G is a finite Abelian group and F is a free Abelian

group. The finite group G is a characteristic subgroup of �ab

called the torsion subgroup of �ab. The rank of F is an

isomorphism invariant of �, denoted by �1ð�Þ, called the first

Betti number of �.

The exponent of a finite additive group G is the smallest

positive integer e such that eg = 0 for all g 2 G. The exponent

of G is the least common multiple of the orders of all elements

of G. In this paper, we prove that the exponent of the torsion

subgroup G of the abelianization �ab of an arbitrary

n-dimensional space group � divides the order of the

holonomy (point) group of �.

Let Z(�) be the center of �, that is, the subgroup of all

elements of � that commute with every element of �. The

center Z(�) is a characteristic subgroup of �. The following

theorem, which strengthens Theorem 6 of Farkas (1981), says

that the abelianization of a space group � determines the size

of the center of �.

Theorem 1. [Ratcliffe & Tschantz (2008), Theorem 6.] If � is

an n-dimensional space group, then every element of Z(�) is a

translation, Z(�) is a free Abelian group of rank �1ð�Þ and

�=Zð�Þ is an ðn� �1Þ-dimensional space group.

Let � be a space group. By Theorem 1, we have that Z(�) is

the subgroup of the translation group T of � of all the

elements that are fixed by the action of � on T by conjugation.

Therefore Z(�) is the subgroup of T of all the elements that

are fixed by the action of the point group � of �. This implies

that �1ð�Þ is equal to the dimension of the fixed space of the

point group � of � by Theorem 1. The fixed space of � is the

intersection of the fixed spaces of a set of generators of �, and

so the first Betti number of � is easy to determine.

We became interested in computing �ab when we consid-

ered the problem of identifying the space group �/Z(�). By

Theorem 3 of Farkas (1975), the first Betti number of �/Z(�)

is zero, and so the abelianization of �/Z(�) is finite. This puts a

restriction on the possibilities for �/Z(�). For example, if �/

Z(�) is one-dimensional, then �/Z(�) is an infinite dihedral

group by consulting Table 1.



2. Computation method

We will explain our computation method by working through

the computation of the abelianization of the two-dimensional

space group 8-pgg. We start by considering generators for the

group given in Table 1A of Brown et al. (1978). Let I denote

the identity 2 � 2 matrix. The generators are the standard

translations �1 ¼ ð1; 0Þ þ I and �2 ¼ ð0; 1Þ þ I together with

the Euclidean isometries A and � ¼ ð1=2; 1=2Þ þ B where

A ¼
�1 0

0 �1

� �
; B ¼

1 0

0 �1

� �
:

The standard translations generate a free Abelian group of

rank two with generators �1 and �2 and defining relation

½�1; �2� ¼ I; in other words, the translation group has the group

presentation h�1; �2; ½�1; �2�i. The point group has generators

A, B subject to the relations A2 ¼ I, B2 ¼ I, ½A;B� ¼ I given

in Table 1A of Brown et al. (1978). Thus the point group of

8-pgg has the group presentation

hA;B; A2;B2; ½A;B�i:

We now build a group presentation for the space group 8-pgg

by lifting the generators and relations of the point group and

adding relations that show how the lifted generators act on the

standard translations by conjugation. The generators A and B

of the point group lift to generators A and �, respectively. The

relations A2 ¼ I, B2 ¼ I, ½A;B� ¼ I of the point group lift to

the relations A2 ¼ I, �2 ¼ �1, ½A; �� ¼ �1�
�1
2 , respectively. The

matrices A and B determine how the generators A and � act

on �1 and �2 by conjugation. For example, the columns of B

imply that ��1�
�1 ¼ �1 and ��2�

�1 ¼ ��1
2 . We obtain the

group presentation for the two-dimensional space group

8-pgg,

h�1; �2;A; �; ½�1; �2�;A2; �2��1
1 ; ½A; ����1

1 �2;A�1A�1�1;

A�2A�1�2; ��1�
�1��1

1 ; ��2�
�1�2i:

We next abelianize the above presentation by making all

generators commute. This gives the Abelian group presenta-

tion for the abelianization of 8-pgg,

h�1; �2;A; �; A2; �2��1
1 ; ��1

1 �2; �
2
1; �

2
2i:

We simplify the above presentation by eliminating the

generator �1 via the relation �1 ¼ �2 derived from the relator

��1
1 �2, and obtain the Abelian group presentation

h�2;A; �; A2; �2��1
2 ; �2

2i:

We next eliminate the generator �2 via the relation �2 ¼ �2 and

obtain the Abelian group presentation hA; �; A2; �4i: Hence

the abelianization of the two-dimensional space group 8-pgg is

isomorphic to Z2 � Z4. Here Zn ¼ Z=nZ is the additive cyclic

group of order n.

In our general computer computation, we skip all the

simplification of the presentations and apply a standard linear

algebra method, discussed in x3.3 of Magnus et al. (1966), to

compute the abelianization of a space group from an initial

group presentation of the space group.

We now explain this method by using it to compute the

abelianization of 8-pgg. The method begins by forming the

presentation m � n matrix M, for the Abelian group presen-

tation, whose ijth entry is the exponent of the ith generator in

the jth relator. For our example, we obtain the following 4� 5

matrix shown with row and column headings:

The idea of the method is to perform a sequence of elemen-

tary row and column operations on M to convert M into a

matrix of the form

with di � 1 for each i. This implies that M presents the Abelian

group

Zd1
� � � � � Zdk

� Zm�k:

The elementary operations allowed on M are

(1) interchange two rows (columns),

(2) change the sign of a row (column),

(3) add an integral multiple of a row (column) to another

row (column).

The first step is to move the smallest nonzero entry of M in

absolute value to the upper left-hand corner by type (1)

elementary operations. For our example, we interchange

columns 1 and 2 to obtain the matrix

�1 0 �1 2 0

0 0 1 0 2

0 2 0 0 0

2 0 0 0 0

0
BB@

1
CCA:

The next step is to make the new upper left-hand corner entry

positive by a type (2) elementary operation. For our example,

we multiply the first row by �1 to obtain the matrix

1 0 1 �2 0

0 0 1 0 2

0 2 0 0 0

2 0 0 0 0

0
BB@

1
CCA:

The next step is to use the new upper left-hand corner entry to

reduce the entries of the first row and first column by type (3)

elementary operations. For our example, we subtract the first

column from the third column and we add twice the first

column to the fourth column to obtain the matrix
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1 0 0 0 0

0 0 1 0 2

0 2 0 0 0

2 0 �2 4 0

0
BB@

1
CCA:

Then we subtract twice the first row from the fourth row to

obtain the matrix

1 0 0 0 0

0 0 1 0 2

0 2 0 0 0

0 0 �2 4 0

0
BB@

1
CCA:

If in the above process we create a nonzero entry that is

smaller in absolute value than the upper left-hand corner

entry, then we go back to the first step and repeat the process.

If the upper left-hand corner entry is still a smallest nonzero

entry in absolute value, then all the other entries in the first

row and first column are zero. In this case, ignore the first row

and first column and repeat the above process with the

remaining (m � 1) � (n � 1) submatrix. For our example, we

interchange columns 2 and 3 to obtain the matrix

1 0 0 0 0

0 1 0 0 2

0 0 2 0 0

0 �2 0 4 0

0
BB@

1
CCA:

We subtract twice column 2 from column 4 to obtain the

matrix

1 0 0 0 0

0 1 0 0 0

0 0 2 0 0

0 �2 0 4 4

0
BB@

1
CCA:

Then we add twice row 2 to row 4 to obtain the matrix

1 0 0 0 0

0 1 0 0 0

0 0 2 0 0

0 0 0 4 4

0
BB@

1
CCA:

The final step for our example is to subtract column 4 from

column 5 to obtain the matrix

1 0 0 0 0

0 1 0 0 0

0 0 2 0 0

0 0 0 4 0

0
BB@

1
CCA;

which is of the desired form. From this final matrix, we see that

the abelianization of 8-pgg is isomorphic to Z2 � Z4. The 1

entries of the matrix do not contribute anything, since

Z1 ¼ Z=Z ¼ f0g.

3. Tables

In order to make our tables as useful as possible, we have

included all the most common names for the the space groups.

The column headed IT gives the International Tables (Hahn,
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Table 1
The abelianizations of the one-dimensional space groups.

IT BBNWZ Group Conway CARAT Abelianization Holonomy

1 1/1/1/1 C1 ðÞ min.1-1.1-0 Z C1

2 1/2/1/1 D1 ½� max.1-1.1-0 Z2
2 C2

Table 2
The abelianizations of the two-dimensional space groups.

IT BBNWZ HM Conway CARAT Abelianization Holonomy

1 1/1/1/1 p1 � min.2-1.1-0 Z
2 C1

2 1/2/1/1 p2 2222 group.1-1.1-0 Z3
2 C2

3 2/1/1/1 pm 		 min.3-1.1-0 Z� Z2
2 C2

4 2/1/1/2 pg �� min.3-1.1-1 Z� Z2 C2

5 2/1/2/1 cm 	� min.3-1.2-0 Z� Z2 C2

6 2/2/1/1 pmm 	2222 group.2-1.1-0 Z4
2 C2

2

7 2/2/1/2 pmg 22	 group.2-1.1-1 Z3
2 C2

2

8 2/2/1/3 pgg 22� group.2-1.1-3 Z2 � Z4 C2
2

9 2/2/2/1 cmm 2	22 group.2-1.2-0 Z3
2 C2

2

10 3/1/1/1 p4 442 min.4-1.1-0 Z2 � Z4 C4

11 3/2/1/1 p4m 	442 max.2-1.1-0 Z
3
2 D4

12 3/2/1/2 p4g 4	2 max.2-1.1-1 Z2 � Z4 D4

13 4/1/1/1 p3 333 min.5-1.1-0 Z
2
3 C3

14 4/2/1/1 p3m1 	333 group.4-2.1-0 Z2 D3

15 4/2/2/1 p31m 3	3 group.4-1.1-0 Z2 � Z3 D3

16 4/3/1/1 p6 632 group.3-1.1-0 Z2 � Z3 C6

17 4/4/1/1 p6m 	632 max.3-1.1-0 Z2
2 D6
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Table 3
The abelianizations of the three-dimensional space groups.

IT BBNWZ HM Conway CARAT Abelianization Holonomy

1 1/1/1/1 P1 ð�Þ min.6-1.1-0 Z3 C1

2 1/2/1/1 P�11 ð2222Þ group.5-1.1-0 Z4
2 C2

3 2/1/1/1 P2 ð20202020Þ min.7-1.1-0 Z� Z3
2 C2

4 2/1/1/2 P21 ð21212121Þ min.7-1.1-1 Z� Z2
2 C2

5 2/1/2/1 C2 ð20202121Þ min.7-1.2-0 Z� Z2
2 C2

6 2/2/1/1 Pm ½�0� min.8-1.1-0 Z
2
� Z

2
2 C2

7 2/2/1/2 Pc ð���0Þ min.8-1.1-1 Z
2
� Z2 C2

8 2/2/2/1 Cm ½�1� min.8-1.2-0 Z
2
� Z2 C2

9 2/2/2/2 Cc ð���1Þ min.8-1.2-1 Z2 C2

10 2/3/1/1 P2=m ½20202020� group.6-1.1-0 Z
5
2 C2

2

11 2/3/1/3 P21=m ½21212121� group.6-1.1-1 Z4
2 C2

2

12 2/3/2/1 C2=m ½20202121� group.6-1.2-0 Z4
2 C2

2

13 2/3/1/2 P2=c ð202022Þ group.6-1.1-2 Z4
2 C2

2

14 2/3/1/4 P21=c ð212122Þ group.6-1.1-3 Z2
2 � Z4 C2

2

15 2/3/2/2 C2=c ð202122Þ group.6-1.2-1 Z3
2 C2

2

16 3/1/1/1 P222 ð	20202020Þ min.10-1.1-0 Z5
2 C2

2

17 3/1/1/2 P2221 ð	21212121Þ min.10-1.1-1 Z
4
2 C2

2

18 3/1/1/3 P21212 ð2020 ���Þ min.10-1.1-3 Z
2
2 � Z4 C2

2

19 3/1/1/4 P212121 ð2121 ���Þ min.10-1.1-7 Z
2
4 C2

2

20 3/1/2/2 C2221 ð21	2121Þ min.10-1.2-1 Z3
2 C2

2

21 3/1/2/1 C222 ð20	2020Þ min.10-1.2-0 Z4
2 C2

2

22 3/1/3/1 F222 ð	20212021Þ min.10-1.3-0 Z4
2 C2

2

23 3/1/4/1 I222 ð21	2020Þ min.10-1.4-0 Z2
2 � Z4 C2

2

24 3/1/4/2 I212121 ð20	2121Þ min.10-1.4-1 Z3
2 C2

2

25 3/2/1/1 Pmm2 ð	�2�2�2�2Þ min.9-1.1-0 Z� Z4
2 C2

2

26 3/2/1/7 Pmc21 ð	�2:2�2:2Þ min.9-1.1-2 Z� Z3
2 C2

2

27 3/2/1/3 Pcc2 ð	:2:2:2:2Þ min.9-1.1-10 Z� Z3
2 C2

2

28 3/2/1/2 Pma2 ð2020	�Þ min.9-1.1-1 Z� Z3
2 C2

2

29 3/2/1/9 Pca21 ð2121	:Þ min.9-1.1-6 Z� Z2
2 C2

2

30 3/2/1/4 Pnc2 ð2020	:Þ min.9-1.1-11 Z� Z2
2 C2

2

31 3/2/1/8 Pmn21 ð2121	�Þ min.9-1.1-3 Z� Z2
2 C2

2

32 3/2/1/5 Pba2 ð2020�0Þ min.9-1.1-5 Z� Z2 � Z4 C2
2

33 3/2/1/10 Pna21 ð2121�Þ min.9-1.1-7 Z� Z4 C2
2

34 3/2/1/6 Pnn2 ð2020�1Þ min.9-1.1-15 Z� Z2
2 C2

2

35 3/2/2/1 Cmm2 ð20	�2�2Þ min.9-1.2-0 Z� Z3
2 C2

2

36 3/2/2/3 Cmc21 ð21	�2:2Þ min.9-1.2-1 Z� Z2
2 C2

2

37 3/2/2/2 Ccc2 ð20	:2:2Þ min.9-1.2-3 Z� Z2
2 C2

2

38 3/2/3/1 Amm2 ð	�2�2�2:2Þ min.9-1.3-0 Z� Z3
2 C2

2

39 3/2/3/2 Abm2 ð	�2:2:2:2Þ min.9-1.3-2 Z� Z3
2 C2

2

40 3/2/3/3 Ama2 ð2021	�Þ min.9-1.3-1 Z� Z2
2 C2

2

41 3/2/3/4 Aba2 ð2021	:Þ min.9-1.3-3 Z� Z2
2 C2

2

42 3/2/4/1 Fmm2 ð	�2�2:2:2Þ min.9-1.4-0 Z� Z3
2 C2

2

43 3/2/4/2 Fdd2 ð2021�Þ min.9-1.4-1 Z� Z2 C2
2

44 3/2/5/1 Imm2 ð21	�2�2Þ min.9-1.5-0 Z� Z2
2 C2

2

45 3/2/5/3 Iba2 ð21	:2:2Þ min.9-1.5-3 Z� Z2
2 C2

2

46 3/2/5/2 Ima2 ð20	�2:2Þ min.9-1.5-1 Z� Z2
2 C2

2

47 3/3/1/1 Pmmm ½	�2�2�2�2� group.7-1.1-0 Z6
2 C3

2

48 3/3/1/4 Pnnn ð2�		12020Þ group.7-1.1-63 Z4
2 C3

2

49 3/3/1/2 Pccm ½	:2:2:2:2� group.7-1.1-10 Z5
2 C3

2

50 3/3/1/3 Pban ð2�		02020Þ group.7-1.1-30 Z4
2 C3

2

51 3/3/1/5 Pmma ½2020	�� group.7-1.1-1 Z5
2 C3

2

52 3/3/1/8 Pnna ð202 �		1Þ group.7-1.1-31 Z3
2 C3

2

53 3/3/1/7 Pmna ½2020	:� group.7-1.1-11 Z4
2 C3

2

54 3/3/1/6 Pcca ð202 �		0Þ group.7-1.1-21 Z4
2 C3

2

55 3/3/1/13 Pbam ½2020�0� group.7-1.1-5 Z3
2 � Z4 C3

2
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Table 3 (continued)

IT BBNWZ HM Conway CARAT Abelianization Holonomy

56 3/3/1/12 Pccn ð2�		:2:2Þ group.7-1.1-23 Z2
2 � Z4 C3

2

57 3/3/1/9 Pbcm ð202 �		�Þ group.7-1.1-6 Z4
2 C3

2

58 3/3/1/14 Pnnm ½2020�1� group.7-1.1-15 Z2
2 � Z4 C3

2

59 3/3/1/11 Pmmn ð2�		�2�2Þ group.7-1.1-3 Z4
2 C3

2

60 3/3/1/10 Pbcn ð202 �		:Þ group.7-1.1-27 Z
3
2 C3

2

61 3/3/1/16 Pbca ð212 �		:Þ group.7-1.1-25 Z3
2 C3

2

62 3/3/1/15 Pnma ð212 �		�Þ group.7-1.1-7 Z2
2 � Z4 C3

2

63 3/3/2/3 Cmcm ½2021	�� group.7-1.2-1 Z4
2 C3

2

64 3/3/2/6 Cmca ½2021	:� group.7-1.2-5 Z4
2 C3

2

65 3/3/2/1 Cmmm ½20	�2�2� group.7-1.2-0 Z5
2 C3

2

66 3/3/2/2 Cccm ½20	:2:2� group.7-1.2-3 Z4
2 C3

2

67 3/3/2/4 Cmma ð	202�2�2Þ group.7-1.2-4 Z5
2 C3

2

68 3/3/2/5 Ccca ð	202:2:2Þ group.7-1.2-7 Z4
2 C3

2

69 3/3/3/1 Fmmm ½	�2�2:2:2� group.7-1.3-0 Z5
2 C3

2

70 3/3/3/2 Fddd ð2�		2021Þ group.7-1.3-1 Z3
2 C3

2

71 3/3/4/1 Immm ½21	�2�2� group.7-1.4-0 Z4
2 C3

2

72 3/3/4/2 Ibam ½21	:2:2� group.7-1.4-3 Z4
2 C3

2

73 3/3/4/4 Ibca ð	212:2:2Þ group.7-1.4-7 Z4
2 C3

2

74 3/3/4/3 Imma ð	212�2�2Þ group.7-1.4-1 Z4
2 C3

2

75 4/1/1/1 P4 ð404020Þ min.11-1.1-0 Z� Z2 � Z4 C4

76 4/1/1/2 P41 ð414121Þ min.11-1.1-1 Z� Z2 C4

77 4/1/1/3 P42 ð424220Þ min.11-1.1-2 Z� Z2
2 C4

79 4/1/2/1 I4 ð424021Þ min.11-1.2-0 Z� Z4 C4

80 4/1/2/2 I41 ð434120Þ min.11-1.2-1 Z� Z2 C4

81 4/2/1/1 P�44 ð4420Þ min.12-1.1-0 Z2
2 � Z4 C4

82 4/2/2/1 I �44 ð4421Þ min.12-1.2-0 Z2
4 C4

83 4/3/1/1 P4=m ½404020� group.12-1.1-0 Z3
2 � Z4 C4 � C2

84 4/3/1/2 P42=m ½424220� group.12-1.1-2 Z
2
2 � Z4 C4 � C2

85 4/3/1/3 P4=n ð4402Þ group.12-1.1-1 Z2
2 � Z4 C4 � C2

86 4/3/1/4 P42=n ð4422Þ group.12-1.1-3 Z2
2 � Z4 C4 � C2

87 4/3/2/1 I4=m ½424021� group.12-1.2-0 Z2
2 � Z4 C4 � C2

88 4/3/2/2 I41=a ð4412Þ group.12-1.2-1 Z2 � Z4 C4 � C2

89 4/4/1/1 P422 ð	404020Þ group.11-1.1-0 Z4
2 D4

90 4/4/1/4 P4212 ð40	20Þ group.11-1.1-1 Z2
2 � Z4 D4

91 4/4/1/2 P4122 ð	414121Þ group.11-1.1-2 Z3
2 D4

92 4/4/1/5 P41212 ð41	21Þ group.11-1.1-3 Z2 � Z4 D4

93 4/4/1/3 P4222 ð	424220Þ group.11-1.1-4 Z4
2 D4

94 4/4/1/6 P42212 ð42	20Þ group.11-1.1-5 Z2
2 � Z4 D4

97 4/4/2/1 I422 ð	424021Þ group.11-1.2-0 Z3
2 D4

98 4/4/2/2 I4122 ð	434120Þ group.11-1.2-1 Z3
2 D4

99 4/5/1/1 P4mm ð	�4�4�2Þ group.10-1.1-0 Z� Z3
2 D4

100 4/5/1/5 P4bm ð40	�2Þ group.10-1.1-2 Z� Z2 � Z4 D4

101 4/5/1/4 P42cm ð	:4�4:2Þ group.10-1.1-4 Z� Z2
2 D4

102 4/5/1/8 P42nm ð42	�2Þ group.10-1.1-6 Z� Z2
2 D4

103 4/5/1/3 P4cc ð	:4:4:2Þ group.10-1.1-5 Z� Z2
2 D4

104 4/5/1/7 P4nc ð40	:2Þ group.10-1.1-7 Z� Z4 D4

105 4/5/1/2 P42mc ð	�4:4�2Þ group.10-1.1-1 Z� Z2
2 D4

106 4/5/1/6 P42bc ð42	:2Þ group.10-1.1-3 Z� Z4 D4

107 4/5/2/1 I4mm ð	�4�4:2Þ group.10-1.2-0 Z� Z2
2 D4

108 4/5/2/2 I4cm ð	�4:4:2Þ group.10-1.2-1 Z� Z2
2 D4

109 4/5/2/3 I41md ð41	�2Þ group.10-1.2-2 Z� Z2 D4

110 4/5/2/4 I41cd ð41	:2Þ group.10-1.2-3 Z� Z2 D4

111 4/6/1/1 P�442m ð	4�420Þ group.9-2.1-0 Z4
2 D4

112 4/6/1/2 P�442c ð	4:420Þ group.9-2.1-2 Z2
2 � Z4 D4

113 4/6/1/3 P�4421m ð4�		�2Þ group.9-2.1-1 Z2
2 � Z4 D4

114 4/6/1/4 P�4421c ð4�		:2Þ group.9-2.1-3 Z2
4 D4
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Table 3 (continued)

IT BBNWZ HM Conway CARAT Abelianization Holonomy

115 4/6/2/1 P�44m2 ð	�44�2Þ group.9-1.1-0 Z4
2 D4

116 4/6/2/2 P�44c2 ð	:44:2Þ group.9-1.1-2 Z2
2 � Z4 D4

117 4/6/2/3 P�44b2 ð4�		020Þ group.9-1.1-1 Z2
2 � Z4 D4

118 4/6/2/4 P�44n2 ð4�		120Þ group.9-1.1-3 Z2
2 � Z4 D4

119 4/6/3/1 I �44m2 ð	4�421Þ group.9-2.2-0 Z
3
2 D4

120 4/6/3/2 I �44c2 ð	4:421Þ group.9-2.2-1 Z3
2 D4

121 4/6/4/1 I �442m ð	�44:2Þ group.9-1.2-0 Z2
2 � Z4 D4

122 4/6/4/2 I �442d ð4�		21Þ group.9-1.2-1 Z2 � Z4 D4

123 4/7/1/1 P4=mmm ½	�4�4�2� group.8-1.1-0 Z5
2 D4 � C2

124 4/7/1/2 P4=mcc ½	:4:4:2� group.8-1.1-9 Z4
2 D4 � C2

125 4/7/1/5 P4=nbm ð	404�2Þ group.8-1.1-2 Z4
2 D4 � C2

126 4/7/1/6 P4=nnc ð	404:2Þ group.8-1.1-11 Z3
2 D4 � C2

127 4/7/1/13 P4=mbm ½40	�2� group.8-1.1-6 Z3
2 � Z4 D4 � C2

128 4/7/1/14 P4=mnc ½40	:2� group.8-1.1-15 Z2
2 � Z4 D4 � C2

129 4/7/1/9 P4=nmm ð	4�4�2Þ group.8-1.1-4 Z4
2 D4 � C2

130 4/7/1/10 P4=ncc ð	4:4:2Þ group.8-1.1-13 Z3
2 D4 � C2

131 4/7/1/3 P42=mmc ½	�4:4�2� group.8-1.1-8 Z4
2 D4 � C2

132 4/7/1/4 P42=mcm ½	:4�4:2� group.8-1.1-1 Z4
2 D4 � C2

133 4/7/1/7 P42=nbc ð	424:2Þ group.8-1.1-10 Z3
2 D4 � C2

134 4/7/1/8 P42=nnm ð	424�2Þ group.8-1.1-3 Z
4
2 D4 � C2

135 4/7/1/15 P42=mbc ½42	:2� group.8-1.1-14 Z2
2 � Z4 D4 � C2

136 4/7/1/16 P42=mnm ½42	�2� group.8-1.1-7 Z2
2 � Z4 D4 � C2

137 4/7/1/11 P42=nmc ð	4�4:2Þ group.8-1.1-12 Z3
2 D4 � C2

138 4/7/1/12 P42=ncm ð	4:4�2Þ group.8-1.1-5 Z2
2 � Z4 D4 � C2

139 4/7/2/1 I4=mmm ½	�4�4:2� group.8-1.2-0 Z4
2 D4 � C2

140 4/7/2/2 I4=mcm ½	�4:4:2� group.8-1.2-2 Z4
2 D4 � C2

141 4/7/2/3 I41=amd ð	414�2Þ group.8-1.2-1 Z3
2 D4 � C2

142 4/7/2/4 I41=acd ð	414:2Þ group.8-1.2-3 Z
3
2 D4 � C2

143 5/1/2/1 P3 ð303030Þ min.13-1.1-0 Z� Z2
3 C3

144 5/1/2/2 P31 ð313131Þ min.13-1.1-1 Z� Z3 C3

146 5/1/1/1 R3 ð303132Þ min.13-1.2-0 Z� Z3 C3

147 5/2/2/1 P�33 ð6302Þ group.22-1.1-0 Z2
2 � Z3 C6

148 5/2/1/1 R�33 ð6312Þ group.22-1.2-0 Z2
2 � Z3 C6

149 5/3/2/1 P312 ð	303030Þ group.20-1.1-0 Z2
2 D3

150 5/3/3/1 P321 ð30	30Þ group.20-2.1-0 Z2
2 � Z3 D3

151 5/3/2/2 P3112 ð	313131Þ group.20-1.1-1 Z2
2 D3

152 5/3/3/2 P3121 ð31	31Þ group.20-2.1-1 Z2
2 � Z3 D3

155 5/3/1/1 R32 ð	303132Þ group.20-1.2-0 Z2
2 D3

156 5/4/2/1 P3m1 ð	�3�3�3Þ group.21-2.1-0 Z� Z2 D3

157 5/4/3/1 P31m ð30	�3Þ group.21-1.1-0 Z� Z2 � Z3 D3

158 5/4/2/2 P3c1 ð	:3:3:3Þ group.21-2.1-1 Z D3

159 5/4/3/2 P31c ð30	:3Þ group.21-1.1-1 Z� Z3 D3

160 5/4/1/1 R3m ð31	�3Þ group.21-1.2-0 Z� Z2 D3

161 5/4/1/2 R3c ð31	:3Þ group.21-1.2-1 Z D3

162 5/5/2/1 P�331m ð	�6302Þ group.14-1.1-0 Z3
2 D6

163 5/5/2/2 P�331c ð	:6302Þ group.14-1.1-1 Z2
2 D6

164 5/5/3/1 P�33m1 ð	6�3�2Þ group.14-2.1-0 Z3
2 D6

165 5/5/3/2 P�33c1 ð	6:3:2Þ group.14-2.1-1 Z2
2 D6

166 5/5/1/1 R�33m ð	�6312Þ group.14-1.2-0 Z3
2 D6

167 5/5/1/2 R�33c ð	:6312Þ group.14-1.2-1 Z2
2 D6

168 6/1/1/1 P6 ð603020Þ group.18-1.1-0 Z� Z2 � Z3 C6

169 6/1/1/4 P61 ð613121Þ group.18-1.1-1 Z C6

171 6/1/1/2 P62 ð623220Þ group.18-1.1-2 Z� Z2 C6

173 6/1/1/3 P63 ð633021Þ group.18-1.1-3 Z� Z3 C6

174 6/2/1/1 P�66 ½303030� group.19-1.1-0 Z2
2 � Z

2
3 C6

175 6/3/1/1 P6=m ½603020� group.13-1.1-0 Z3
2 � Z3 C6 � C2



1987) number. The column headed BBNWZ gives the Brown–

Bülow–Neubüser–Wondratschek–Zassenhaus (Brown et al.,

1978) symbol. The column headed HM gives the Hermann–

Mauguin symbol (Hahn, 1987). The column headed Conway
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Table 3 (continued)

IT BBNWZ HM Conway CARAT Abelianization Holonomy

176 6/3/1/2 P63=m ½633021� group.13-1.1-1 Z2
2 � Z3 C6 � C2

177 6/4/1/1 P622 ð	603020Þ group.17-1.1-0 Z3
2 D6

178 6/4/1/4 P6122 ð	613121Þ group.17-1.1-1 Z2
2 D6

180 6/4/1/2 P6222 ð	623220Þ group.17-1.1-2 Z3
2 D6

182 6/4/1/3 P6322 ð	633021Þ group.17-1.1-3 Z
2
2 D6

183 6/5/1/1 P6mm ð	�6�3�2Þ group.15-1.1-0 Z� Z2
2 D6

184 6/5/1/2 P6cc ð	:6:3:2Þ group.15-1.1-3 Z� Z2 D6

185 6/5/1/4 P63cm ð	�6:3:2Þ group.15-1.1-2 Z� Z2 D6

186 6/5/1/3 P63mc ð	:6�3�2Þ group.15-1.1-1 Z� Z2 D6

187 6/6/1/1 P�66m2 ½	�3�3�3� group.16-1.1-0 Z3
2 D6

188 6/6/1/2 P�66c2 ½	:3:3:3� group.16-1.1-1 Z2
2 D6

189 6/6/2/1 P�662m ½30	�3� group.16-2.1-0 Z3
2 � Z3 D6

190 6/6/2/2 P�662c ½30	:3� group.16-2.1-1 Z2
2 � Z3 D6

191 6/7/1/1 P6=mmm ½	�6�3�2� max.4-1.1-0 Z4
2 D6 � C2

192 6/7/1/2 P6=mcc ½	:6:3:2� max.4-1.1-3 Z3
2 D6 � C2

193 6/7/1/4 P63=mcm ½	�6:3:2� max.4-1.1-2 Z3
2 D6 � C2

194 6/7/1/3 P63=mmc ½	:6�3�2� max.4-1.1-1 Z3
2 D6 � C2

195 7/1/1/1 P23 2� min.14-2.1-0 Z2 � Z3 A4

196 7/1/2/1 F23 1� min.14-1.1-0 Z3 A4

197 7/1/3/1 I23 4�� min.14-3.1-0 Z3 � Z4 A4

198 7/1/1/2 P213 1�=4 min.14-2.1-1 Z3 A4

199 7/1/3/2 I213 2�=4 min.14-3.1-1 Z2 � Z3 A4

200 7/2/1/1 Pm�33 4� group.23-2.1-0 Z2
2 � Z3 A4 � C2

201 7/2/1/2 Pn�33 4�þ group.23-2.1-1 Z2
2 � Z3 A4 � C2

202 7/2/2/1 Fm�33 2� group.23-1.1-0 Z2 � Z3 A4 � C2

203 7/2/2/2 Fd�33 2�þ group.23-1.1-1 Z2 � Z3 A4 � C2

204 7/2/3/1 Im�33 8�� group.23-3.1-0 Z2
2 � Z3 A4 � C2

205 7/2/1/3 Pa�33 2�=4 group.23-2.1-2 Z2 � Z3 A4 � C2

206 7/2/3/2 Ia�33 4�=4 group.23-3.1-1 Z2
2 � Z3 A4 � C2

207 7/3/1/1 P432 4�� group.25-2.1-0 Z2
2 S4

208 7/3/1/3 P4232 4þ group.25-2.1-2 Z2
2 S4

209 7/3/2/1 F432 2�� group.25-1.1-0 Z2 S4

210 7/3/2/2 F4132 2þ group.25-1.1-1 Z2 S4

211 7/3/3/1 I432 8þ� group.25-3.1-0 Z2
2 S4

212 7/3/1/2 P4332 2þ=4 group.25-2.1-1 Z2 S4

214 7/3/3/2 I4132 4þ=4 group.25-3.1-1 Z2
2 S4

215 7/4/1/1 P�443m 2�:2 group.24-2.1-0 Z2
2 S4

216 7/4/2/1 F �443m 1�:2 group.24-1.1-0 Z2 S4

217 7/4/3/1 I �443m 4�:2 group.24-3.1-0 Z2 � Z4 S4

218 7/4/1/2 P�443n 4� group.24-2.1-1 Z4 S4

219 7/4/2/2 F �443c 2�� group.24-1.1-1 Z2 S4

220 7/4/3/2 I �443d 4�=4 group.24-3.1-1 Z4 S4

221 7/5/1/1 Pm�33m 4�:2 max.5-2.1-0 Z3
2 S4 � C2

222 7/5/1/3 Pn�33n 8�� max.5-2.1-1 Z2
2 S4 � C2

223 7/5/1/2 Pm�33n 8� max.5-2.1-3 Z2
2 S4 � C2

224 7/5/1/4 Pn�33m 4þ:2 max.5-2.1-2 Z3
2 S4 � C2

225 7/5/2/1 Fm�33m 2�:2 max.5-1.1-0 Z2
2 S4 � C2

226 7/5/2/2 Fm�33c 4�� max.5-1.1-2 Z2
2 S4 � C2

227 7/5/2/4 Fd�33m 2þ:2 max.5-1.1-1 Z2
2 S4 � C2

228 7/5/2/3 Fd�33c 4þþ max.5-1.1-3 Z2
2 S4 � C2

229 7/5/3/1 Im�33m 8�:2 max.5-3.1-0 Z3
2 S4 � C2

230 7/5/3/2 Ia�33d 8�=4 max.5-3.1-1 Z2
2 S4 � C2



gives the Conway symbol (Conway, 1992; Conway et al., 2001).

The column headed CARAT gives the CARAT (Opgenorth et

al., 1998) symbol. The column headed Abelianization gives the

abelianization. Here Zn ¼ Z=nZ is the additive cyclic group of

order n. We use exponential notation so that Z2
2 ¼ Z2 � Z2.

The column headed Holonomy gives the holonomy (point)

group. Here Cn is the multiplicative cyclic group of order n, Dn

is the dihedral group of order 2n, A4 is the alternating group of

order 12 and S4 is the symmetric group of order 24. We use

exponential notation so that C2
2 ¼ C2 � C2.

The eleven enantiomorphic three-dimensional space-group

pairs are (76 – P41, 78 – P43), (91 – P4122, 95 – P4322),

(92 – P41212, 96 – P43212), (144 – P31, 145 – P32), (151 – P3112,

153 – P3212), (152 – P3121, 154 – P3221), (169 – P61, 170 – P65),

(171 – P62, 172 – P64), (178 – P6122, 179 – P6522), (180 – P6222,

181 – P6422), (212 – P4332, 213 – P4132). As enantiomorphic

space groups are isomorphic, we only list the first group of

each pair.

As input for our computer programs, we first used the

BBNWZ generators for space groups and relations for point

groups given in Brown et al. (1978). We then reran our

programs with generators and relations provided by

CARAT, and crosschecked the abelianizations. Finally, all the

abelianizations in our tables were checked by hand

calculations to further insure the accuracy of our

calculations.

The first Betti number, �1, of a space group depends only on

the center of the space group by Theorem 1, and so �1 depends

only on the fixed space of the point group; consequently �1

depends only on the Q-class of the point group. A Q-class is

denoted by the first two numbers of the BBNWZ symbol. By

inspection, all the first Betti numbers of the three-dimensional

space groups were computed correctly by our computer

programs.

The abelianizations of the torsion-free two-dimensional

space groups (IT Nos. 1, 4) are well known. These two groups

are classified by their abelianizations. The abelianizations of

the torsion-free three-dimensional space groups (IT Nos. 1, 4,

7, 9, 19, 29, 33, 76, 144, 169) agree with the tables on page 122

of Wolf (1974). These ten groups are classified by their

orientability and abelianizations.

The abelianization of a Coxeter group is easily computed

from its Coxeter diagram. In particular, the abelianization of a

finitely generated Coxeter group is finite of exponent 2. The

only one-dimensional space group that is a Coxeter group is

D1. The two-dimensional space groups that are Coxeter

groups are the reducible group 6-pmm (D1 �D1), and the

irreducible groups 11-p4m, 14-p3m1 and 17-p6m. The three-

dimensional space groups that are Coxeter groups are the

reducible groups with IT Nos. 47 (D1 � pmm), 123

(D1 � p4m), 187 (D1 � p3m1) and 191 (D1 � p6m), and the

irreducible groups with IT Nos. 216, 221 and 225. The Coxeter

diagram of IT No. 216 is a square with all edge labels 3. The

diagram of No. 221 is the linear diagram (4, 3, 4), and the

diagram of No. 225 is a star with edge labels 4, 3, 3.

If K is a m-dimensional space group and H is an n-

dimensional space group, then K � H is an (m + n)-

dimensional space group. The consistency of our tables can be

checked using the relationship ðK�HÞab ffi Kab �Hab.

The two-dimensional space groups that are the direct

products of one-dimensional space groups are 1-p1

ðC1 � C1Þ, 3-pm ðC1 �D1Þ and 6-pmm ðD1 �D1Þ.

The three-dimensional space groups that are the direct

product of a one-dimensional space group and a two-

dimensional space group are the space groups with IT Nos. 1

ðC1 � p1Þ, 3 ðC1 � p2Þ, 6 ðC1 � pm;D1 � p1Þ, 7 ðC1 � pgÞ,

8 ðC1 � cmÞ, 10 ðD1 � p2Þ, 25 ðC1 � pmm;D1 � pmÞ, 26

ðD1 � pgÞ, 28 ðC1 � pmgÞ, 32 ðC1 � pggÞ, 35 ðC1 � cmmÞ,

38 ðD1 � cmÞ, 47 ðD1 � pmmÞ, 51 ðD1 � pmgÞ, 55

ðD1 � pggÞ, 65 ðD1 � cmmÞ, 75 ðC1 � p4Þ, 83 ðD1 � p4Þ,

99 ðC1 � p4mÞ, 100 ðC1 � p4gÞ, 123 ðD1 � p4mÞ, 127

ðD1 � p4gÞ, 143 ðC1 � p3Þ, 156 ðC1 � p3m1Þ, 157

ðC1 � p31mÞ, 168 ðC1 � p6Þ, 174 ðD1 � p3Þ, 175 ðD1 � p6Þ,

183 ðC1 � p6mÞ, 187 ðD1 � p3m1Þ, 189 ðD1 � p31mÞ and

191 ðD1 � p6mÞ.

4. Theory of the abelianization of space groups

Let � be an n-dimensional space group with translation group

T and point group �. In this section, we prove that the

exponent of the torsion subgroup of �ab divides the order of

�. We now explain how �ab is built up from T and �ab. To

begin with, we have a short exact sequence of groups and

homomorphisms

1! T �!
i

� �!
p

�! 1:

Exact means that the image of a homomorphism is equal to

the kernel of the following homomorphism in the sequence.

For example, in the above sequence, the image T of the

inclusion map i from T to � is the kernel of the projection map

p from � to � defined by p(a + A) = A. Short means a

sequence of four group homomorphisms with end groups of

order 1. In a short exact sequence the second homomorphism

is injective and the third homomorphism is surjective. A space

group � is called symmorphic if the above short exact

sequence splits, that is, if there exists a homomorphism

s : �! � such that ps : �! � is the identity map. The map

s is called a right inverse of p.

Let T� ¼ T=½�;T� where ½�;T� ¼ f½�; �� : � 2 �; � 2 Tg.

There is an exact sequence that explains how �ab is built up

from T and �ab. By Corollary 6.4 of Chapter VII of Brown

(1982), we have an exact sequence of homology groups, with Z

coefficients, and homomorphisms induced by the inclusion i of

T into � and the projection p of � onto �,

H2ð�Þ �!
p	

H2ð�Þ �!
�

T� �!
i	

�ab �!
p	

�ab ! 0:

If � is symmorphic, then both p	 maps in the above sequence

have right inverses, and so we have a split, short, exact

sequence

0! T� �!
i	

�ab �!
p	

�ab ! 0:

Therefore, we have �ab ffi T� ��ab. Note that 73 of the 219

three-dimensional space groups are symmorphic. The
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symmorphic space groups are those whose BBNWZ symbol

ends in 1 (or whose CARAT symbol ends in 0).

If � is cyclic, then H2ð�Þ ¼ 0, and so we have a short exact

sequence

0! T� �!
i	

�ab �!
p	

�ab ! 0:

If H2ð�Þ is nontrivial, then i	 : T� ! �ab need not be injec-

tive. For example, consider the two-dimensional space group

8-pgg considered in x2. The relators A�1A�1�1, A�2A�1�2,

��1�
�1��1

1 , ��2�
�1�2 of the presentation for � imply that T�

has the Abelian presentation h�1; �2; �
2
1; �

2
2i. Therefore

T� ffi Z2 � Z2. Here � ¼ C2 � C2, and by Corollary 5.8 of

Chapter V of Brown (1982), we have that H2ð�Þ ffi Z2. Now

the relator ½A; ����1
1 �2 in the presentation for � implies that

the generator of H2ð�Þ is mapped to the element ½�;T��1�
�1
2

of T� by the connecting homomorphism � : H2ð�Þ ! T�.

Therefore ½�;T��1�
�1
2 is in the kernel of i	 : T� ! �ab.

In general, we have the exact sequence

T� �!
i	

�ab �!
p	

�ab ! 0:

Denote the exponent of a finite Abelian group G by Exp(G)

and the torsion subgroup of an Abelian group G by Tor(G).

The last exact sequence implies the next proposition.

Proposition 1. If � is an n-dimensional space group, then

ExpðTorð�abÞÞ divides ExpðTorðT�ÞÞExpð�abÞ. In particular,

ExpðTorð�abÞÞ � ExpðTorðT�ÞÞExpð�abÞ:

If � is the two-dimensional space group 8-pgg, then the

exponents of �ab, T� and �ab are 4, 2 and 2, respectively.

Hence, the upper bound for the exponent of Tor(�ab) in

Proposition 1 is sharp for this example. More generally, if

� ¼ pgg�Dn�2
1 , then the exponents of �ab, T� and �ab are 4,

2 and 2, respectively, and so the upper bound for the exponent

of Tor(�ab) in Proposition 1 is sharp for this example for all

n � 2.

Proposition 2. Let � be an n-dimensional space group. Let

i : Zð�Þ ! � and p : �! �=Zð�Þ be the natural injection

and projection. Then i and p induce a short exact sequence

1! Zð�Þ �!
i	

�ab �!
p	
ð�=Zð�ÞÞab ! 0:

Proof. The short exact sequence

1! Zð�Þ �!
i

� �!
p

�=Zð�Þ ! 1

induces a homology exact sequence

Zð�Þ �!
i	

�ab �!
p	
ð�=Zð�ÞÞab ! 0:

The group ð�=Zð�ÞÞab is finite by Theorem 3 of Farkas (1975),

and so the image of i	 is of finite index in �ab. By Theorem 1,

we have that Z(�) is a free Abelian group of rank �1ð�Þ, and

so i	 must be injection.

Let K be a set of orthogonal transformations of En. Define

FixðKÞ ¼ fx 2 En : Cx ¼ x for all C 2 Kg:

Then FixðKÞ is a vector subspace of En. We denote the order of

a group G by |G|.

Theorem 2. Let � be an n-dimensional space group with

translation group T and point group �. Let K be a subgroup of

� such that

dimðFixðKÞÞ ¼ �1ð�Þ:

Then ExpðTorðT�ÞÞ divides |K|. In particular, ExpðTorðT�ÞÞ

divides |�|, and so

ExpðTorðT�ÞÞ � j�j:

Proof. As Fixð�Þ � FixðKÞ and

dimðFixð�ÞÞ ¼ �1ð�Þ ¼ dimðFixðKÞÞ;

we conclude that Fixð�Þ ¼ FixðKÞ.

The point group � acts on T by conjugation. If A 2 � and

bþ I 2 T, then Aðbþ IÞA�1 ¼ Abþ I. Hence it is natural to

replace the multiplicative group T with the isomorphic

additive group Tad ¼ fb 2 En : bþ I 2 Tg. Likewise we

replace Z(�) with the isomorphic group Zð�Þad ¼

fb 2 En : bþ I 2 Zð�Þg.
The action of � on T corresponds to the natural action of

� on Tad by left multiplication. Now T� is isomorphic

to ðTadÞ� ¼ Tad=H where H is generated by

fAb� b : A 2 � and b 2 Tadg.

Let b 2 Tad. Then we have

jKjb 
P
fCb : C 2 Kg mod H:

If A 2 K, then we have

ðA� IÞ
P
fCb : C 2 Kg ¼ 0:

Hence, we have thatP
fCb : C 2 Kg 2 FixðKÞ \ Tad ¼ Fixð�Þ \ Tad ¼ Zð�Þad:

Therefore jKjb  0 mod HZð�Þad. Hence ExpðTad=HZð�ÞadÞ

divides |K|. Now Z(�) injects into �ab by Proposition 2. The

injection of Z(�) into �ab factors through T�, and so we may

regard Z(�) to be a subgroup of T�, and likewise we may

regard Z(�)ad to be a subgroup of (Tad)�. Then we have that

Tad=ðHZð�ÞadÞ ¼ ðTadÞ�=Zð�Þad:

Hence ExpðT�=Zð�ÞÞ divides |K|. As the quotient map from

T� to T�/Z(�) maps TorðT�Þ isomorphically onto a subgroup

of T�=Zð�Þ, we have that ExpðTorðT�ÞÞ divides |K|. In parti-

cular, ExpðTorðT�ÞÞ divides |�|.

If n = 2, then � has an element A such that

dimðFixðAÞÞ ¼ �1ð�Þ, and we deduce from Theorem 2 that the

exponent of TorðT�Þ divides the order of A. For example, let �
be the symmorphic two-dimensional space group 16-p6. Then

� has an element A of order 2 and an element B of order 3
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such that FixðAÞ ¼ FixðBÞ ¼ f0g. Therefore ExpðT�Þ divides

both 2 and 3. Hence ExpðT�Þ ¼ 1, and so T� ¼ f0g.

Let �i ¼ ei þ I for i ¼ 1; . . . ; n be the standard translations,

and let � ¼ h�1; . . . ; �n;�Ii. Then ExpðT�Þ ¼ 2 ¼ j�j, and so

the upper bound for the exponent of TorðT�Þ in Theorem 2 is

sharp for this example for all n � 1.

Proposition 1 and Theorem 2 imply that ExpðTorð�abÞÞ

divides j�jExpð�abÞ. The next theorem gives a better result.

Theorem 3. If � is an n-dimensional space group with point

group �, then ExpðTorð�abÞÞ divides |�|, and so

ExpðTorð�abÞÞ � j�j:

Proof. For each A 2 �, choose a coset representative aA þ A

of T in � corresponding to A. Given an element bþ B 2 � and

a coset representative aA þ A, then

ðaA þ AÞðbþ BÞðaAB þ ABÞ
�1
2 T:

The transfer homomorphism tr : �! T is defined by the

formula

trðbþ BÞ ¼
Q
fðaA þ AÞðbþ BÞðaAB þ ABÞ�1 : A 2 �g:

As T is Abelian, tr induces a homomorphism tr	 : �ab ! T.

The inclusion map i : T! � induces a homomorphism

i	 : T! �ab. The composition i	tr	 : �ab ! �ab is obviously

multiplication by |�|. Now tr	ðTorð�abÞÞ ¼ f0g, since T is

torsion free. Therefore, we have that

j�jTorð�abÞ ¼ i	tr	ðTorð�abÞÞ ¼ f0g:

Hence Expð�abÞ divides |�|.

Let � be a symmorphic n-dimensional space group with

cyclic point group �. Then �ab ffi T� ��. Hence

ExpðTorð�abÞÞ ¼ j�j, and so the upper bound for the expo-

nent of Torð�abÞ in Theorem 3 is sharp for this example for all

n � 1.

Let � be the three-dimensional space group with IT No.

197. Then �ab ffi Z3 � Z4, and the point group � of � is

isomorphic to A4. Hence Exp(�ab) = 12 = |�|, and so the upper

bound for the exponent of �ab in Theorem 3 is sharp for this

example.

Remark: Let � be an n-dimensional space group with

translation group T and point group �. By the same transfer

argument as in the proof of Theorem 3, the exponent of the

torsion subgroup of the kth homology group Hkð�;ZÞ of �
divides |�| for each positive integer k, since HkðT;ZÞ is torsion

free for each k.

A group � is said to be perfect if �ab = {0}. In looking over

our tables, one sees that every n-dimensional space group is

imperfect for n = 1, 2, 3. The reason this is true is that the point

group � is solvable for n = 1, 2, 3, and so either � is trivial or

�ab is nontrivial. This is no longer true for n = 4. Let � be one

of the two four-dimensional space groups whose Z-class has

BBNWZ symbol 31/3/2. Then � is isomorphic to A5, which is a

simple group of order 60, and so �ab = {0}. From the

generators for � given in Brown et al. (1978), we compute that

T� = {0}. Hence �ab = {0} by Proposition 1. These two groups

are the only perfect four-dimensional space groups.

By a computer calculation, using the database provided by

CARAT, we found that in dimension 5 only six of the 222 018

space groups are perfect. The CARAT symbols of these

perfect space groups are group.1034-3.1-0, group.1039-1.1-0,

group.1039-3.1-1, min.169-1.1-0, min.169-1.1-1 and min.169-

2.1-1. The point group of the Q-class min.169 is the simple

group A5 of order 60. The point group of the Q-class

group.1039 is the simple group A6 of order 360. The point

group of the Q-class group.1034 is the perfect group of order

960, which is a split extension of Z4
2 by A5, denoted A5240 by

Holt & Plesken (1989).

We are grateful for the referees’ helpful comments and for

their suggestion to investigate the exponent of the torsion

subgroup of the abelianization of a space group.
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